Chemical communication is very important in herbivorous insects, with many species being important agricultural pests. They often use olfactory cues to find their host plants at a distance and evaluate their suitability upon contact with non-volatile cues. Responses to such cues are modulated through interactions between various stimuli of biotic and abiotic origin. In addition, the response to the same stimulus can vary as a function of, for example, previous experience, age, mating state, sex, and morph. Here we summarize recent advances in the understanding of plant localization and recognition in herbivorous insects with a focus on the interplay between long- and short-range signals in a complex environment. We then describe recent findings illustrating different types of plasticity in insect plant choice behavior and the underlying neuronal mechanisms at different levels of the chemosensory pathway. In the context of strong efforts to replace synthetic insecticides with alternative pest control methods, understanding combined effects between long- and close-range chemical cues in herbivore–plant interactions and their complex environment in host choice are crucial to develop effective plant protection methods. Furthermore, plasticity of behavioral and neuronal responses to chemical cues needs to be taken into account to develop effective sustainable pest insect control through behavioral manipulation.