2019
DOI: 10.1002/fsn3.1259
|View full text |Cite
|
Sign up to set email alerts
|

Astaxanthin inhibits aldose reductase activity in Psammomys obesus, a model of type 2 diabetes and diabetic retinopathy

Abstract: Astaxanthin (ATX) is a marine carotenoid known for its powerful antioxidant and neuroprotective properties. In this study, we investigated the in vitro and in vivo potential inhibitory effect of ATX on the aldose reductase (AR) activity, a key enzyme in the polyol pathway responsible for the pathogenesis of diabetic complications including diabetic retinopathy (DR). The gerbil Psammomys obesus (P. ob.), an animal model for type 2 diabetes and DR has been used. The erythrocyte and retinal AR activity of P. ob. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 32 publications
(22 citation statements)
references
References 34 publications
0
20
0
Order By: Relevance
“…An inhibitory effect of ASX has also been recently reported on aldose reductase (AR) activity, a key enzyme in the polyol pathway involved in the pathogenesis of diabetic complications including DR in the gerbil (Gerbillidae family, Psammomys obesus species) animal models for T2DM [97]. In db/db mice, ASX improved oscillatory potentials (OPs) and the levels of OS markers including superoxide anion, MDA (a marker of lipid peroxidation), 8-hydroxy-2-deoxyguanosine (8-OHdG, indicator of oxidative DNA damage), and MnSOD (manganese superoxide dismutase) in the retinal tissue [98].…”
Section: Astaxanthin: Protection Against Diabetic Retinopathymentioning
confidence: 99%
“…An inhibitory effect of ASX has also been recently reported on aldose reductase (AR) activity, a key enzyme in the polyol pathway involved in the pathogenesis of diabetic complications including DR in the gerbil (Gerbillidae family, Psammomys obesus species) animal models for T2DM [97]. In db/db mice, ASX improved oscillatory potentials (OPs) and the levels of OS markers including superoxide anion, MDA (a marker of lipid peroxidation), 8-hydroxy-2-deoxyguanosine (8-OHdG, indicator of oxidative DNA damage), and MnSOD (manganese superoxide dismutase) in the retinal tissue [98].…”
Section: Astaxanthin: Protection Against Diabetic Retinopathymentioning
confidence: 99%
“…Samples were fed with astaxanthin (4.8 mg/kg of body weight) once a day for one week. Results showed a marked reduction of AR activity in vivo and ex vivo following astaxanthin supplementation, thus supporting its role in both the prevention and early treatment of diabetic retinopathy [44].…”
Section: Retinal Diseasesmentioning
confidence: 63%
“…Then, the number of infiltrating cells and protein concentration in the aqueous humor collected 24 h after LPS treatment was determined. As a result, astaxanthin administration significantly decreased the production of NO, PGE2, and TNF-α by directly blocking NOS enzyme activity [44]. Interestingly, ocular anti-inflammatory effect of 100 mg/kg astaxanthin was comparable to that one of 10-mg/kg prednisolone [53].…”
Section: Uveitismentioning
confidence: 91%
See 1 more Smart Citation
“…Astaxanthin from dietary sources is responsible for the orange-red coloration of salmon, lobster, and other seafood species, which cannot synthesize the compound de novo. Astaxanthin, particularly that from natural sources, is utilized extensively in the food, aquaculture, cosmetic, and pharmaceutical industries because of its distinctive coloration and antioxidant properties [1, [9][10][11][12].…”
Section: Introductionmentioning
confidence: 99%