Astaxanthin (ATX) is a marine carotenoid known for its powerful antioxidant and neuroprotective properties. In this study, we investigated the in vitro and in vivo potential inhibitory effect of ATX on the aldose reductase (AR) activity, a key enzyme in the polyol pathway responsible for the pathogenesis of diabetic complications including diabetic retinopathy (DR). The gerbil Psammomys obesus (P. ob.), an animal model for type 2 diabetes and DR has been used. The erythrocyte and retinal AR activity of P. ob. individuals were, respectively, assessed monthly and at the 7th month during a 7‐month hypercaloric diet (HD) using a NADPH oxidation method. Meanwhile, the body weight and blood glucose of the gerbils were monitored. After 7 months, P. ob. individuals were fed with ATX (4.8 mg/kg of body weight) once a day for 1 week. The results showed that the HD‐fed animals developed significant obesity and hyperglycemia in comparison with controls. Erythrocyte AR activity showed a progressive and significant increase in the HD‐fed group compared with controls. Retinal AR activity was higher in the 7‐month HD‐fed group compared with controls. Erythrocyte AR activity was markedly decreased after ATX‐treatment in vitro and in vivo. These findings suggested that ATX inhibited the erythrocyte AR activity and could be used for DR prevention and/or early treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.