Background: Tissue plasminogen activator (tPA) regulates fibrinolysis and is routinely used as ischemic stroke pharmacotherapy. We hypothesized that brain microvascular tPA expression and barrier properties of endothelial cells are substantially related. Methods: Human brain microvascular endothelial cells were incubated with two agents known to modify cAMP pathways: forskolin and rolipram. We analyzed development of endothelial barrier properties, i.e., trans-endothelial electrical resistance (TEER), permeability of endothelial cell monolayer, expression of influx transporter glut-1 and endothelial tight junction molecules occludin and claudin-5, tPA antigen release, and levels of endothelial tPA mRNA. Results: Forskolin plus rolipram-treated endothelial cells showed increased TEER compared to controls (174±20% of control at day six, p<0.01), while permeability to albumin and 70kDa dextran was reduced (21±6.8% of control and 3.8±0.3% of control, respectively, p<0.001). In addition, occludin and claudin-5 protein were up-regulated, occludin mRNA was increased to 206±60% of control (p<0.05), glut-1 mRNA was increased to 196±68% of control (p<0.05), levels of tPA protein were reduced to 35±7.0% of control (p<0.001) after six days, and tPA mRNA was reduced to 32±7.7% of control (p<0.01). TPA and occludin mRNA levels were inversely associated (r=-0.68, p<0.05). Conclusions: In this in vitro model, barrier properties were strongly linked (by inverse association) with tPA expression of brain microvascular endothelial cells.