The
enantioselective total synthesis of madangamine E has been
completed in 30 steps, enabled by a new catalytic and highly enantioselective
desymmetrizing intramolecular Michael addition reaction of a prochiral
ketone to a tethered β,β′-disubstituted
nitroolefin. This key carbon–carbon bond forming reaction efficiently
constructed a chiral bicyclic core in near-perfect enantio- and diastereo-selectivity,
concurrently established three stereogenic centers, including a quaternary
carbon, and proved highly scalable. Furthermore, the pathway and origins
of enantioselectivity in this catalytic cyclization were probed using
density functional theory (DFT) calculations, which revealed the crucial
substrate/catalyst interactions in the enantio-determining step. Following
construction of the bicyclic core, the total synthesis of madangamine
E could be completed, with key steps including a mild one-pot oxidative
lactamization of an amino alcohol, a two-step Z-selective
olefination of a sterically hindered ketone, and ring-closing metatheses
to install the two macrocyclic rings.