DNA as an intriguing organic ligand has been widely employed for synthesizing metal nanoclusters and engineering their properties. This review aims to present recent progress on DNA-encoded metal (Ag, Cu, Au, Ag/Pt, Cu/Ag, etc.) nanoclusters (DNA-MNCs), focusing on their applications in the fields of analysis, logic operation, and therapy based on properties including fluorescence, electrochemiluminescence (ECL), and antibacterial and catalytic activity, and summarizes the attractive features of the latest research. The key points are briefly described as follows. (1) Analytical systems have been constructed based on fluorescence regulation, and nuclease-assisted and enzyme-free amplification strategies have been extensively adopted with fluorescent DNA-MNCs for amplified analysis. (2) DNA-MNCs may play more than one role (emitter, quencher, or catalyst) in ECL-based analytical systems. (3) Apart from antibacterial activity, DNA-MNCs also possess apparent catalytic capability, such as enzyme-like activity (i.e., nanozymes), which has been applied in colorimetric systems. (4) Reversibly regulating the catalytic activity of DNA-MNCs has been attained with DNA systems. It is believed that through in-depth investigation of the relationship between atomic structure and property, more novel DNA-MNCs will be explored and applied in the future.