Two mononuclear zero-dimensional Ni(II) and Zn(II) complexes bearing diethylenetriamine derivative ligand, namely [NiL(CH3COO)2(H2O)] (1) and [ZnL(CH3COO)2] (2) [L = N, N’-bis(2-hydroxybenzyl)diethylenetriamine], were synthesized under reflux conditions. The molecular composition and structure of the complexes were identified by IR, PXRD, elemental analyses, and single crystal X-ray diffraction. Complex 1 belongs to a monoclinic crystal system with the P21/n space group, and Complex 2 belongs to a monoclinic crystal system with the C2/c space group. The Henry reaction of nitromethane with aromatic aldehydes was explored with Complexes 1 and 2 as the catalyst. Results from the catalytic reaction revealed that the complexes displayed excellent catalytic activities under the optimized conditions and that the substrate scope of aromatic aldehydes could be extended to a certain extent. In addition, the possible catalytic mechanism of the Henry reaction was also deduced.