Baby chicks and other animals including human infants master simple arithmetic. They discriminate 2 vs. 3 (1 + 1 vs. 1 + 1 + 1) but fail with 3 vs. 4 (1 + 1 + 1 vs. 1 + 1 + 1 + 1). Performance is restored when elements are grouped as 2 + 1 vs. 2 + 2. Here, we address whether grouping could lead to asymmetric response bias. We recoded behavioural data from a previous study, in which separate groups of four-day-old domestic chicks underwent an arithmetic task: when the objects were presented one-by-one (1 + 1 + 1 vs. 1 + 1 + 1 + 1), chicks failed in locating the larger group irrespective of its position and did not show any side bias; Experiment 1. When the objects were presented as grouped (2 + 1 vs. 2 + 2), chicks succeeded, performing better when the larger set was on their left; Experiment 2. A similar leftward bias was also observed with harder discriminations (4 vs. 5: 3 + 1 vs. 3 + 2), with baby chicks succeeding in the task only when the larger set was on the left (Experiments 3 and 4). A previous study showed a rightward bias, with tasks enhancing individual processing. Despite a similar effect in boosting proto-arithmetic calculations, individual processing (eliciting a right bias) and grouping (eliciting a left bias) seem to depend on distinct cognitive mechanisms.