2021
DOI: 10.3390/math9182252
|View full text |Cite
|
Sign up to set email alerts
|

Asymptotics of the Sum of a Sine Series with a Convex Slowly Varying Sequence of Coefficients

Abstract: We study the asymptotic behavior in a neighborhood of zero of the sum of a sine series g(b,x)=∑k=1∞bksinkx whose coefficients constitute a convex slowly varying sequence b. The main term of the asymptotics of the sum of such a series was obtained by Aljančić, Bojanić, and Tomić. To estimate the deviation of g(b,x) from the main term of its asymptotics bm(x)/x, m(x)=[π/x], Telyakovskiĭ used the piecewise-continuous function σ(b,x)=x∑k=1m(x)−1k2(bk−bk+1). He showed that the difference g(b,x)−bm(x)/x in some neig… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 14 publications
0
0
0
Order By: Relevance