Self-healing materials integrated with robust mechanical strength and high healing efficiency simultaneously would be of great use in many fields but have been proven to be extremely challenging. Here, inspired by animal cartilage, we present a ultrarobust self-healing material by incorporating high density noncovalent bonds at interface between the assembled interwoven network of two-dimensional nanosheets and polymer matrix to collectively produce a strong interfacial interaction. The resulted nanocomposite material shows robust tensile strength (52.3 MPa), high toughness (282.7 MJ m–3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80-100%), which overturns previous understanding of the traditional noncovalent bonding self-healing materials that high mechanical robustness and healing ability tend to be mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.