A memory structure Pt/Al2O3/Hf0.5Zr0.5O2/Al2O3/p-Si was fabricated by using atomic layer deposition and rf-magnetron sputtering techniques, and its microstructure has been investigated by using the high resolution transmission electron microscopy (HRTEM). By measuring the applied gate voltage dependence of the capacitance for the memory structure, the planar density of the trapped charges in Hf0.5Zr0.5O2 high-k film was estimated as 6.63 × 1012 cm−2, indicating a body defect density of larger than 2.21 × 1019 cm−3. It is observed that the post-annealing in N2 can reduces the defect density in Hf0.5Zr0.5O2 film, which was ascribed to the occupancy of oxygen vacancies by nitrogen atoms.