2014 IEEE/RSJ International Conference on Intelligent Robots and Systems 2014
DOI: 10.1109/iros.2014.6943080
|View full text |Cite
|
Sign up to set email alerts
|

Attack resilient state estimation for autonomous robotic systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
19
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 49 publications
(19 citation statements)
references
References 7 publications
0
19
0
Order By: Relevance
“…Also Eyisi and Koutsoukos (2014) perform Matlab/Simulink simulations on a single-input single-output (SISO) system; it deals with a velocity control of a single joint robotic arm over a communication network. Bezzo et al (2014) use robot operating system 14 (ROS) based simulator emulating electromechanical and dynamical behavior of the real robot. In Park et al (2014) simulations are carried out using a simple model of air traffic operations.…”
Section: Simulation Test Systemmentioning
confidence: 99%
See 1 more Smart Citation
“…Also Eyisi and Koutsoukos (2014) perform Matlab/Simulink simulations on a single-input single-output (SISO) system; it deals with a velocity control of a single joint robotic arm over a communication network. Bezzo et al (2014) use robot operating system 14 (ROS) based simulator emulating electromechanical and dynamical behavior of the real robot. In Park et al (2014) simulations are carried out using a simple model of air traffic operations.…”
Section: Simulation Test Systemmentioning
confidence: 99%
“…filter ;Pasqualetti et al (2013) ;Yang et al (2016) ;Manandhar et al (2014) ;Rawat and Bajracharya (2015) ;Amin et al (2009) ;Mo et al (2015) ; ; ;Kwon et al (2014) ;Rhouma et al (2015) ; ; ;Bai et al (2015) ;Zhang et al (2014) ;Bezzo et al (2014) ;Park et al (2014) ; Miao et al (2014) ; Weerakkody and Sinopoli (2015) ; Bezzo et al (2015) ; Mishra et al (2015b) Qi et al (2015) ; Yuan and Mo (2015) ; Do et al (2015) (Extended) Luenberger observer Pasqualetti et al (2013) ; Liu et al (2014b) ; Zhu and Ba ¸s ar (2015) ; D'Innocenzo et al (2015) ; Bopardikar and Speranzon (2013) ; Kwon and Hwang (2013a) ; Eyisi and Koutsoukos (2014) ; Djouadi et al (2015) ; Mishra et al (2014) ; Shoukry and Tabuada (2014) ; Cetinkaya et al (2015) Tang et al (2015) ; Lee et al (2015) H ∞ filter Shoukry et al (2013) ; Kwon and Hwang (2013b) Least trimmed squares (LTS) Chakhchoukh and Ishii (2015) Maximum likelihood Liu et al (2011) ; Kosut et al (2011) ; Bobba et al (2010) ; Hendrickx et al (2014) ; Huang et al (2010) ; Yuan et al (2012) ; Kim and Poor (2011) ; Pasqualetti et al (2011) ; Esmalifalak et al (2011) ; Giani et al (2013) ; Kosut et al (2011) ; Bobba et al (2010) ; Bi and Zhang (2014) ; Talebi et al (2010) Vukovi ć et al (2012) ; Ozay et al (2013) ; Rahman and Mohsenian-Rad (2012) ; Kosut et al (2011) ; Bobba et al (2010) ; Mishra et al (2015a) ; Lo and Ansari (2013) ; Liu et al (2014a) ; Sedghi and Jonckheere (2015) ; Deka et al (2014, 2015a, 2015b) ; Li (2014) ; Sanandaji et al (2014) ; Wang and Ren (2014) ; Liu et al (2015b) Yamaguchi et al (2014) ; Hao et al (2015) ; Rahman et al (2014) ; Tan et al (2014) ; Yu and Chin (2015) ; Li et al (2015a) ; Xie et al (2011) ; Jia et al (2014) ; Esmalifalak et al (2012) ; Choi and Xie (2013) ; Esmalifalak et al (2013) ; Bi and Zhang (2013) ; Kim et al (2014b) ; Ma et al (2015) ; Sanjab and Saad (2015) Minimum variance Liu et al (2011) ; Kosut et al (2011) ; Bobba et al (2010) ; Hendrickx et al (2014) ; Huang et al (2010) ; Yuan et al (2012) ; Kim and Poor (2011) ; Pasqualetti et al (2011) ; Esmalifalak et al (2011) ; Giani et al (2013) ; Yang et al (2014) ; Bi and Zhang (2014) ; Talebi et al (2010) Vukovi ć et al (2012) ; Ozay et al (2013) ; Rahman and Mohsenian-Rad (2012) ; Kim and Tong (2013) ; Vukovi ć and Dán (2014) ; Mishra et al (2015a) ; Lo and Ansari (2013) ; Liu et al (2014a) ; Sedghi and Jonckheere (2015) ; Deka et al (2014, 2015a, 2015b) ; Li (2014) ; Sanandaji et al (2014) ; Wang and Ren (2014) ; Liu et al (2015b) Yamaguchi et al (2014) ; Hao et al (2015) ; Rahman et al (2014) ; Tan et al (2014) ; Yu and Chin (2015) ; Li et al (2015a) ; Xie et al (2011) ; Jia et al (2014) ; Esmalifalak et al (2012) ; Choi and Xie (2013) ; Esmalifalak et al (2013) ; Bi and Zhang (2013) ; Kim et al (2014b) ; Ma et al (2015) ; Weimer et al (2014) ; Sanjab and Saad (2015) Weighted least-square (WLS) Liu et al (2011) ; Kosut et al (2011) ; Bobba et al (2010) ; Hendrickx et al (2014) ; Teixeira et al (2010) ; Huang et al (2010) ; Yuan et al (2012) ; Kim and Poor (2011) ; Pasqualetti et al (2011) ; Esmalifalak et al (2011) ; Giani et al (2013) ; Yang et al (2014) ; Bi and Zhang (2014) Sou et al (2014) ; Talebi ...…”
mentioning
confidence: 99%
“…Most of the above works focus on the prevention and detection aspects of the security system. In paper [34], authors describe the recursive state estimator that compares the calculated state with measurements obtained from redundant sources. The algorithm returns a high variance of measurement noise for the compromised sensor driver.…”
Section: Mobile Robot Cyber-security Surveymentioning
confidence: 99%
“…In [14], Bezzo et al propose a state estimation algorithm to recognise active attacks by using multiple measurements. Their work shows similarities with the functioning of an Intrusion Detection System (IDS).…”
Section: Threat Vector #1: Attacks On Sensor Datamentioning
confidence: 99%