The interaction between information technology and physical world makes Cyber-Physical Systems (CPS) vulnerable to malicious attacks beyond the standard cyber attacks. This has motivated the need for attack-resilient state estimation. Yet, the existing state-estimators are based on the non-realistic assumption that the exact system model is known. Consequently, in this work we present a method for state estimation in presence of attacks, for systems with noise and modeling errors. When the the estimated states are used by a state-based feedback controller, we show that the attacker cannot destabilize the system by exploiting the difference between the model used for the state estimation and the real physical dynamics of the system. Furthermore, we describe how implementation issues such as jitter, latency and synchronization errors can be mapped into parameters of the state estimation procedure that describe modeling errors, and provide a bound on the state-estimation error caused by modeling errors. This enables mapping control performance requirements into real-time (i.e., timing related) specifications imposed on * This material is based on research sponsored by DARPA under agreement number FA8750-12-2-0247. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA or the U.S. Government.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.