Secure state estimation is the problem of estimating the state of a dynamical system from a set of noisy and adversarially corrupted measurements. The secure state estimation is a combinatorial problem, which has been addressed either by brute force search, suffering from scalability issues, or via convex relaxations using algorithms that can terminate in polynomial time but are not necessarily sound. In this paper, we present a novel algorithm that uses a Satisfiability-Modulo-Theory approach to lessen the intrinsic combinatorial complexity of the problem. By leveraging results from formal methods over real numbers, we provide guarantees on the soundness and completeness of our algorithm. Moreover, we provide upper bounds on the runtime performance of the proposed algorithm in order to proclaim the scalability of the proposed algorithm. The scalability argument is then supported by numerical simulations showing an order of magnitude decrease in the runtime performance with alternative techniques. Finally, we demonstrate its application to the problem of controlling an unmanned ground vehicle.
In an aircraft electric power system (EPS), a supervisory control unit must actuate a set of switches to distribute power from generators to loads, while satisfying safety, reliability and real-time performance requirements. To reduce expensive re-design steps in current design methodologies, such a control problem is generally addressed based on minor incremental changes on top of consolidated solutions, since it is difficult to estimate the impact of earlier design decisions on the final implementation. In this paper, we introduce a methodology for the design space exploration and virtual prototyping of EPS supervisory control protocols, following the platform-based design (PBD) paradigm. Moreover, we describe the modeling infrastructure that supports the methodology. In PBD, design space exploration is carried out as a sequence of refinement steps from the initial specification towards a final implementation, by mapping higher-level behavioral models into a set of library components at a lower level of abstraction. In our flow, the system specification is captured using SysML requirement and structure diagrams. State-machine diagrams enable verification of the control protocol at a high level of abstraction, while lowerlevel hybrid models, implemented in Simulink, are used to verify properties related to physical quantities, such as time, voltage and current values. The effectiveness of our approach is illustrated on a prototype EPS control protocol design.
The need for highly integrable and programmable analog-to-digital converters (ADCs) is pushing towards the use of dynamic regenerative comparators to maximize speed, power efficiency and reconfigurability. Comparator thermal noise is, however, a limiting factor for the achievable resolution of several ADC architectures with scaled supply voltages. While mismatch in these comparators can be compensated for by calibration, noise can irreparably hinder performance and is less straightforward to be accounted for at design time. This paper presents a method to estimate the input referred noise in fully dynamic regenerative comparators leveraging a reference architecture. A time-domain analysis is proposed that accounts for the time varying nature of the circuit exploiting some basic results from the solution of stochastic differential equations. The resulting symbolic expressions allow focusing designers' attention on the most influential noise contributors. Analysis results are validated by comparison with electrical simulations and measurement results from two ADC prototypes based on the reference comparator architecture, implemented in 0.18-mu m and 90-nm CMOS technologies
Abstract-We introduce a platform-based design methodology that uses contracts to specify and abstract the components of a cyber-physical system (CPS), and provide formal support to the entire CPS design flow. The design is carried out as a sequence of refinement steps from a high-level specification to an implementation built out of a library of components at the lower level. We review formalisms and tools that can be used to specify, analyze or synthesize the design at different levels of abstractions. For each level, we highlight how the contract operations can be concretely computed as well as the research challenges that should be faced to fully implement them. We illustrate our approach on the design of embedded controllers for aircraft electric power distribution systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.