This paper surveys the field of deep multiagent reinforcement learning (RL). The combination of deep neural networks with RL has gained increased traction in recent years and is slowly shifting the focus from single-agent to multiagent environments. Dealing with multiple agents is inherently more complex as (a) the future rewards depend on multiple players’ joint actions and (b) the computational complexity increases. We present the most common multiagent problem representations and their main challenges, and identify five research areas that address one or more of these challenges: centralised training and decentralised execution, opponent modelling, communication, efficient coordination, and reward shaping. We find that many computational studies rely on unrealistic assumptions or are not generalisable to other settings; they struggle to overcome the curse of dimensionality or nonstationarity. Approaches from psychology and sociology capture promising relevant behaviours, such as communication and coordination, to help agents achieve better performance in multiagent settings. We suggest that, for multiagent RL to be successful, future research should address these challenges with an interdisciplinary approach to open up new possibilities in multiagent RL.