<p>In this paper, a predictive sliding mode control (PSMC) strategy for the quadrotors tracking trajectory problem is proposed. This strategy aims to combine the advantages of sliding mode control (SMC) and non-linear model predictive control (NMPC) to improve the tracking control performance for quadrotors in terms of optimality, inputs/states constraints satisfaction, and strong robustness against disturbances. A comparative study of three popular controllers: the SMC, NMPC, and the integral backstepping control (IBC) is performed with different criteria. Accordingly, IBC and SMC show less computational time and strong robustness, while NMPC has minimum control effort. The discrete Dryden turbulence model is used as a benchmark model to represent the wind effect on the trajectory tracking accuracy. The effectiveness of the proposed method PSMC has been proven and compared with discrete-time slidingmode control (DSMC) and NMPC in several scenarios. Simulation results show that under both wind turbulence and time-variant uncertainties, the PSMC outperforms the other controllers by providing simultaneously disturbance rejection and guarantee that the control inputs are within bounded constraints.</p>