Precision-guided projectiles, which can significantly improve the accuracy and efficiency of fire strikes, are on the rise in current military engagements. The accurate measurement of roll angular rate is critical to guide a gun-launched projectile. However, Micro-Electro-Mechanical System (MEMS) gyroscope with low cost and large range cannot meet the requirement of high precision roll angular rate measurement due to the limitation by the current technology level. Aiming at the problem, the optimization-based angular rate estimation (OBARS) method specific for projectiles is proposed in this study. First, the output angular rate model of redundant gyroscope system based on the autoregressive integrated moving average (ARIMA) model is established, and then the conventional random error model is improved with the ARIMA model. After that, a Sage-Husa Adaptive Kalman Filter (SHAKF) algorithm that can suppress the time-varying process and measurement noise under the flight condition of the high dynamic of the projectile is designed for the fusion of dynamic data. Finally, simulations and experiments have been carried out to validate the performance of the method. The results demonstrate the proposed method can effectively improve the angular rate accuracy more than the related traditional methods for high spinning projectiles.