2008 International Conference on Computer Science and Software Engineering 2008
DOI: 10.1109/csse.2008.1523
|View full text |Cite
|
Sign up to set email alerts
|

Audio Denoising Algorithm Based on Adaptive Wavelet Soft-Threshold of Gain Factor and Teager Energy Operator

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2010
2010
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 12 publications
0
6
0
1
Order By: Relevance
“…Kemudian [7], menerapkan Transformasi Wavelet sebagai preprocessing dalam sistem temu kembali pada lagu berbasis isi. Dalam melakukan thresholding, digunakan Adaptive Wavelet Soft Threshold pada audio dimana keakuratan hasil dari sistem temu kembali bergantung pada koefisien wavelet TEO dan faktor peningkat.…”
Section: Pendahuluanunclassified
“…Kemudian [7], menerapkan Transformasi Wavelet sebagai preprocessing dalam sistem temu kembali pada lagu berbasis isi. Dalam melakukan thresholding, digunakan Adaptive Wavelet Soft Threshold pada audio dimana keakuratan hasil dari sistem temu kembali bergantung pada koefisien wavelet TEO dan faktor peningkat.…”
Section: Pendahuluanunclassified
“…The acoustic signals captured from the engine consist of noise, which requires proper analysis before extracting the features of knock. There are many methods for denoising the signals; among them, wavelets are found to be effective [8,10,11]. Also, there are various mathematical tools for analyzing denoised signals, including the Fourier transform, Wavelet transform, Empirical Mode Decomposition (EMD), etc.…”
Section: Introductionmentioning
confidence: 99%
“…The key advantage of wavelet denoising is to split the data into different frequency compo-nents and study the noise spikes in each frequency component at different resolution (Chang et al, 2000). The wavelet denoising is an emerging advance technique in signal processing that used in a various applications particularly image processing, data compression, impulsive events characterization, pattern recognition signal extraction and denoising (Yu et al, 2007;Li, Zhou, 2008). This type of technique will be useful for removing impact noise produced in the mooring, when acoustic recorders are incorporated in multisuite ocean moorings.…”
Section: Introductionmentioning
confidence: 99%