BACKGROUND
Spinal cord ischemia occurs frequently during thoracic aneurysm repair. Current methods to detect ischemia, based upon electrophysiology techniques, are indirect, non-specific, and temporally slow. Here we report the testing of a spinal cord blood flow and oxygenation monitor, based on Diffuse Correlation and Optical Spectroscopies, during aortic occlusion in a sheep model.
METHODS
Testing was carried out in sixteen Dorset sheep. Sensitivity in detecting spinal cord blood flow and oxygenation changes during aortic occlusion, pharmacologically induced hypotension and hypertension, and physiologically induced hypoxia/hypercarbia were assessed. Accuracy of the Diffuse Correlation Spectroscopy measurements was determined via comparison to microsphere blood flow measurements. Precision was assessed through repeated measurements in response to pharmacologic interventions.
RESULTS
The fiber optic probe can be placed percutaneously, and is capable of continuously measuring spinal cord blood flow and oxygenation preoperatively, intraoperatively, and postoperatively. The device is sensitive to spinal cord blood flow and oxygenation changes associated with aortic occlusion, immediately detecting a fall in blood flow (−65 ± 32%, n=32) and blood oxygenation (−17 ± 13%, n=11) in 100% of trials. Comparison of spinal cord blood flow measurements by the device with microsphere measurements led to a correlation of R2=0.49, p<0.01 and the within-sheep coefficient of variation was 9.69%. Finally, Diffuse Correlation Spectroscopy is temporally more sensitive to ischemic interventions than motor evoked potentials.
CONCLUSIONS
The first generation spinal fiber optic monitoring device offers a novel and potentially important step forward in the monitoring of spinal cord ischemia.