RNA silencing is a conserved eukaryotic gene regulatory system in which sequence specificity is determined by small RNAs. Plant RNA silencing also acts as an antiviral mechanism; therefore, viral infection requires expression of a silencing suppressor. The mechanism and the evolution of silencing suppression are still poorly understood. Tombusvirus open reading frame (ORF) 5-encoded P19 is a size-selective double-stranded RNA (dsRNA) binding protein that suppresses silencing by sequestering double-stranded small interfering RNAs (siRNAs), the specificity determinant of the antiviral silencing system. To better understand the evolution of silencing suppression, we characterized the suppressor of the type member of Aureusviruses, the closest relatives of the genus Tombusvirus. We show that the Pothos latent virus (PoLV) ORF 5-encoded P14 is an efficient suppressor of both virus-and transgene-induced silencing. Findings that in vitro P14 binds dsRNAs and double-stranded siRNAs without obvious size selection suggest that P14, unlike P19, can suppress silencing by sequestering both long dsRNA and double-stranded siRNA components of the silencing machinery. Indeed, P14 prevents the accumulation of hairpin transcript-derived siRNAs, indicating that P14 inhibits inverted repeat-induced silencing by binding the long dsRNA precursors of siRNAs. However, viral siRNAs accumulate to high levels in PoLV-infected plants; therefore, P14 might inhibit virus-induced silencing by sequestering double-stranded siRNAs. Finally, sequence analyses suggest that P14 and P19 suppressors diverged from an ancient dsRNA binding suppressor that evolved as a nested protein within the common ancestor of aureusvirus-tombusvirus movement proteins.RNA silencing (also termed posttranscriptional gene silencing in plants and RNA interference in animals) is a conserved eukaryotic gene inactivation system that plays regulatory roles in many biological processes including development, maintenance of genome stability, and antiviral responses (2,6,12,25,54). RNA silencing is induced by accumulation of doublestranded RNAs (dsRNAs). dsRNAs are first processed by an RNase III-like nuclease called DICER (in plants termed DICER-LIKE, or DCL) into short (21 to 25 nucleotide [nt]) RNAs, and then these short RNAs incorporate and guide different silencing effector complexes to homologous nucleic acids for suppression (2,6,12,16,25,54). In plants, RNA silencing acts at both single-cell (cell-autonomous silencing) and at whole-plant (systemic silencing) levels. Cell-autonomous silencing inactivates genes in the cells in which dsRNAs accumulated. Moreover, cell-autonomous silencing generates mobile silencing signals that confer suppression of homologous mRNAs in neighboring cells (short distance) and in distant tissues (long-distance systemic silencing) (29,31,32,56).DICERs can process dsRNAs into two functionally different small RNAs, micro-RNAs (miRNAs) and small interfering RNAs (siRNAs). miRNAs are involved in the control of many endogenous protein-encoding mRNAs...