While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3′ and 5′ ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6–36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.
The transmission characteristics of Pigeon pea sterility mosaic virus (PPSMV) to pigeon pea (Cajanus cajan) by its eriophyid mite vector, Aceria cajani, were studied. Nonviruliferous A. cajani colonies were established on detached healthy leaflets of a PPSMV-immune pigeon pea cultivar floating on water. The transmission efficiency of single A. cajani was up to 53% but was 100% when >5 mites per plant were used. A. cajani acquired PPSMV after a minimum acquisition access period (AAP) of 15 min and inoculated virus after a minimum inoculation access period (IAP) of 90 min. No latent period was observed. Starvation of A. cajani prior to, or following, PPSMV acquisition reduced the minimum AAP and IAP periods to 10 min and 60 min, respectively, and mites retained virus for up to 13 h. None of the mites that developed from eggs taken from PPSMV-infected leaves transmitted the virus, indicating that it is not transmitted transovarially. Taken together, these data suggest a semipersistent mode of transmission of PPSMV by A. cajani.
S U M M A R YRaspberry bushy dwarf virus (RBDV) was transmitted to raspberry seed both through the pollen and through the ovule and it infected plants pollinated with infected pollen. It did not infect plants prevented from
Ribosomal DNA from Cecidophyopsis mites from different Ribes species was amplified using the polymerase chain reaction and the products digested using restriction enzymes. After separating the DNA fragments on gels, it was possible to identify specimens of mites obtained from field samples by comparing the profiles of their DNA banding patterns with those of known Cecidophyopsis species. Using this analysis, a non-gall forming mite found infesting blackcurrant buds in New Zealand was identified as the gooseberry mite (C. grossulariae). On wild red currant (Ribes spicatum) from Finland showing two sizes of galled buds, the red currant gall mite (C. selachodon) was identified in the larger galls located at the tips of branches and a distinct mite in the smaller galls located on the lower parts of the branches. A mite with a DNA banding profile indistinguishable from this latter mite from R. spicatum was also identified in galled buds of blackcurrant genotypes growing in Finland, including those containing the blackcurrant gall mite (C. ribis)-resistance genes P or Ce. The DNA banding profile of this mite resembled most closely that of C. ribis, but was distinct from it. The occurrence of C. grossulariae and this distinct Cecidophyopsis mite on blackcurrant has implications for the genetic control of Cecidophyopsis mites and possibly for the spread of the reversion disease agent in this crop. . 1974. Transference of resistance to blackcurrant gall mite, Cecidophyopsis ribis, from gooseberry to blackcurrant. Annals of Applied Biology 76: 123-130. Navajas M, Gutierrez J, Bonato 0, Bolland H R, Mapangou-Divassa S. 1994. Intraspecific diversity of the Cassava Green Mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondria1 and nuclear ribosomal DNA sequences and cross-breeding. Experimental and Applied Acarology 18:351-360. 20:139-168. Ribes. Euphytica 20:422-426. Horticulturae 9587-91. Nuts, pp. 457488. Eds J N Moore and J R Ballinger. Wageningen: ISNS Press. Westwood J 0. 1869a. Currant bud disease. Gardener's Chronicle 32:841. Westwood J 0. 18698. Black currant mite. Gardener's Chronicle 32:1016.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.