Preface
Cancer is characterized by uncontrolled proliferation resulting from aberrant activity of various cell cycle proteins; therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrated that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. In contrast, many cancers are uniquely dependent on these proteins and are hence selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. Here, we review the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as future therapeutic potential of various inhibitors. We focus only on proteins that directly regulate cell cycle progression. Cyclin-dependent kinases with transcriptional functions, as well as PARP inhibitors, which are highly successful in targeting BRCA1/BRCA2-mutant tumours, are not covered by this review.