This study assesses the prospectivity of the world’s oldest known stacked petroleum systems from the Proterozoic greater McArthur Basin (Northern Territory, Australia), which has immense potential to host both conventional natural gas and oil, in addition to shale-gas accumulations. The Mesoproterozoic succession of the Beetaloo Sub-basin and surrounding region hosts the Territory’s premier shale-gas play and is at an advanced stage of exploration for shale hydrocarbon plays. However, there is also potential for natural gas in older sedimentary packages, with flows and shows reported in underlying Paleoproterozoic successions. At the continent-scale, four regional petroleum supersystems are identified and described in order to provide a platform for consistent nomenclature at the sedimentary package and group level; in ascending stratigraphic order; these are the Paleoproterozoic Redbank and McArthur supersystems, the Paleoproterozoic–Mesoproterozoic Lawn Supersystem, and the Mesoproterozoic Beetaloo Supersystem. The Redbank and Lawn supersystems are newly named and defined, and the Beetaloo Supersystem is renamed from the former Urapungan Supersystem. Eight possible conventional natural gas plays and six shale-gas plays are documented within the McArthur Supersystem, which incorporates Glyde Package successions of the McArthur Basin and the Birrindudu Basin. Petroleum play concepts are also described from this supersystem to assist with assessing the potential for gas resources. A better understanding of the petroleum systems of the greater McArthur Basin is critical to the targeting of areas for geoscience data acquisition in order to facilitate the reduction of exploration search space; and it enables a more rigorous assessment of the potential for conventional and unconventional hydrocarbon resources at local (play) and regional scales.