Grid-tied photovoltaic (PV) inverters must fulfill several requirements, including high efficiency and reduced cost and complexity of the overall system. Hence, transformerless operation is advantageous in order to achieve the prior requirements. Meanwhile, such operation results in several demerits, like the dc current component injection into the grid. This component should be effectively mitigated in order to avoid some impacts, like the saturation of the transformers in the distribution network. On the other hand, limiting this component up to few milliamperes is seen to be a challenging issue due to the various measurement errors.Accordingly, different blocking and measurement techniques have been proposed and studied to overcome this issue, where some demerits are seen behind each technique like the implementation complexity, the common mode voltage problems, and the high filter requirements. Moreover, none of them measures the dc component directly, but predicts its value using different approaches.Hence, this letter proposes a new technique to measure this dc current component with high accuracy using a coupled-inductor combined with a small range hall effect current sensor in order to achieve the lowest possible cost with the highest possible accuracy. The proposed technique is introduced, analyzed, and tested experimentally to verify its principle of operation. Also experimental measurement of the dc current component using a 5 kVA transformerless grid-tied voltage source inverter (VSI) is introduced with and without the proposed technique in order to validate its operation.