Single-particle cryogenic electron microscopy (cryo-EM) is an imaging technique capable of recovering the highresolution three-dimensional (3D) structure of biological macromolecules from many noisy and randomly oriented projection images. One notable approach to 3D reconstruction, known as Kam's method, relies on the moments of the two-dimensional (2D) images. Inspired by Kam's method, we introduce a rotationally invariant metric between two molecular structures, which does not require 3D alignment. Further, we introduce a metric between a stack of projection images and a molecular structure, which is invariant to rotations and reflections and does not require performing 3D reconstruction. Additionally, the latter metric does not assume a uniform distribution of viewing angles. We demonstrate the uses of the new metrics on synthetic and experimental datasets, highlighting their ability to measure structural similarity.
Impact StatementSingle-particle cryogenic electron microscopy (cryo-EM) is a popular method to obtain three-dimensional (3D) reconstructions of biological molecules from noisy two-dimensional (2D) tomographic projection images. Many iterative techniques for this reconstruction require initializations sufficiently close to the unknown structure to obtain high-quality reconstructions. To help select an initialization from a database of known structures, this paper introduces a metric to compare the similarity of known 3D structures with a stack of noisy 2D tomographic projection images of an unknown structure. We show that this metric distinguishes differing structures and present an efficient method to compute it, notably without performing 3D reconstruction.