Motivated by geometric problems in signal processing, computer vision, and structural biology, we study a class of orbit recovery problems where we observe very noisy copies of an unknown signal, each acted upon by a random element of some group (such as Z/p or SO(3)). The goal is to recover the orbit of the signal under the group action in the high-noise regime. This generalizes problems of interest such as multi-reference alignment (MRA) and the reconstruction problem in cryo-electron microscopy (cryo-EM). We obtain matching lower and upper bounds on the sample complexity of these problems in high generality, showing that the statistical difficulty is intricately determined by the invariant theory of the underlying symmetry group.In particular, we determine that for cryo-EM with noise variance σ 2 and uniform viewing directions, the number of samples required scales as σ 6 . We match this bound with a novel algorithm for ab initio reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from heterogeneous cryo-EM samples.
We prove that the polynomial invariants of a permutation group are Cohen-Macaulay for any choice of coefficient field if and only if the group is generated by transpositions, double transpositions, and 3-cycles. This unites and generalizes several previously known results. The "if" direction of the argument uses Stanley-Reisner theory and a recent result of Christian Lange in orbifold theory. The "only-if" direction uses a local-global result based on a theorem of Raynaud to reduce the problem to an analysis of inertia groups, and a combinatorial argument to identify inertia groups that obstruct Cohen-Macaulayness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.