We
examine the theoretical underpinnings of the seminal discoveries
by Reiner Sustmann about the ambiphilic nature of Huisgen’s
phenyl azide cycloadditions. Density functional calculations with
ωB97X-D and B2PLYP-D3 reproduce the experimental data and provide
insights into ambiphilic control of reactivity. Distortion/interaction-activation
strain and energy decomposition analyses show why Sustmann’s
use of dipolarophile ionization potential is such a powerful predictor
of reactivity. We add to Sustmann’s data set several modern
distortion-accelerated dipolarophiles used in bioorthogonal chemistry
to show how these fit into the orbital energy criteria that are often
used to understand cycloaddition reactivity. We show why such a simple
indicator of reactivity is a powerful predictor of reaction rates
that are actually controlled by a combination of distortion energies,
charge transfer, closed-shell repulsion, polarization, and electrostatic
effects.