2020
DOI: 10.1016/j.ejmp.2020.09.007
|View full text |Cite
|
Sign up to set email alerts
|

Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
7
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
3
1

Relationship

1
9

Authors

Journals

citations
Cited by 28 publications
(11 citation statements)
references
References 25 publications
1
7
0
3
Order By: Relevance
“…All these preliminary and promising results described above explain why the medical community in urology is convinced of the interest of kidney stone recognition methods based on artificial intelligence Fitri et al (2020) and of the importance of incorporating computer aided diagnosis tools in their workflow Jahrreiss et al (2020). This work is an extension of a preliminary study Martínez et al (2020) which still improved the classification results using a RF classifier.…”
Section: Previous Attempts Of Kidney Stone Classificationmentioning
confidence: 98%
“…All these preliminary and promising results described above explain why the medical community in urology is convinced of the interest of kidney stone recognition methods based on artificial intelligence Fitri et al (2020) and of the importance of incorporating computer aided diagnosis tools in their workflow Jahrreiss et al (2020). This work is an extension of a preliminary study Martínez et al (2020) which still improved the classification results using a RF classifier.…”
Section: Previous Attempts Of Kidney Stone Classificationmentioning
confidence: 98%
“…Ряд исследователей сообщает об определении состава камней непосредственно по данным КТ исследований в ручном режиме [13,14]. Од-нако, по мнению Fitri и соавт., подобная интерпретация является трудоемкой, она ассоциирована с наличием потенциальных погрешностей и всецело зависит от опыта и компетенций специалиста, что обуславливает актуальность разработки автоматизированных алгоритмов детекции, сегментации и определении химического состава камней [15].…”
Section: диджитализация в лечебно-диагностическом процессеunclassified
“…Spektrometer FTIR telah digunakan secara luas dalam identifikasi senyawa organik dan anorganik (Artz, et al, 2008) (Lopes, et al, 2018). Sedangkan identifikasi menggunakan CT-Scan memiliki kelebihan diantaranya memiliki resolusi spasial yang tinggi (Fitri, et al, 2020), dan mampu membedakan beberapa jenis batu kemih seperti calcium oxalate dengan phosphate (Duan, et al, 2015) Metodologi Sampel batu kemih yang digunakan dalam penelitian ini diperoleh dari rumah sakit Hasan Sadikin Bandung. Batu kemih tersebut memiliki ukuran dengan rentang 0,7 cm -3,2 cm dan tingkat kekerasan yang berbeda-beda.…”
Section: E-issn: 2355-8229unclassified