The Eucampia Index, which is calculated from valve ratio of Antarctic diatom Eucampia ainarctica varieties, has been expected to be a useful indicator of sea ice coverage or/and sea surface temperature variation in the Southern Ocean. To verify the relationship between the index value and the environmental factors, considerable effort is needed to classify and count valves of E. antarctica in a very large number of samples. In this study, to realize automated detection of the Eucampia Index, we constructed a deep-learning (one of the learning methods of artificial intelligence) based models for identifying Eucampia valves from various particles in a diatom slide. The microfossil Classification and Rapid Accumulation Device (miCRAD) system, which can be used for scanning a slide and cropping images of particles automatically, was employed to collect images in training dataset for the model and test dataset for model verification. As a result of classifying particle images in the test dataset by the initial model "Eant_1000px_200616", accuracy was 78.8%. The Eucampia Index value prepared in the test dataset was 0.80, and the value predicted using the developed model from the same dataset was 0.76. The predicted value was in the range of the manual counting error. These results suggest that the classification performance of the model is similar to that of a human expert. This study revealed that a model capable of detecting the ratio of two diatom species can be constructed using the miCRAD system for the first time. The miCRAD system connected with the developed model in this study is capable of automatically classifying particle images at the same time of capturing images so that the system can be applied to a large-scale analysis of the Eucampia index in the Southern Ocean. Depending on the setting of the classification category, similar method is relevant to investigators who have to process a large number of diatom samples such as for detecting specific species for biostratigraphic and paleoenvironmental studies.