warwick.ac.uk/lib-publicationsOriginal citation: van Lon, Rinde R. S., Branke, Jürgen and Holvoet, Tom. (2017) Optimizing agents with genetic programming : an evaluation of hyper-heuristics in dynamic real-time logistics. Genetic Programming and Evolvable Machines.
Permanent WRAP URL:http://wrap.warwick.ac.uk/86320
Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Publisher's statement:The final publication is available at Springer via https://doi.org/10.1007/s10710-017-9300-5
A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription. Abstract Dynamic pickup and delivery problems (PDPs) require online algorithms for managing a fleet of vehicles. Generally, vehicles can be managed either centrally or decentrally. A common way to coordinate agents decentrally is to use the contract-net protocol (CNET) that uses auctions to allocate tasks among agents. To participate in an auction, agents require a method that estimates the value of a task. Typically this method is an optimization algorithm. Recently, hyper-heuristics has been proposed for automated design of heuristics. Two properties of automatically designed heuristics are particularly promising: 1) a generated heuristic computes quickly, it is expected therefore that hyper-heuristics heuristics perform especially well for urgent problems, and 2) by using simulationbased evaluation, hyper-heuristics can learn from the past and can therefore create a 'rule of thumb' that anticipates situations in the future. In the present paper we empirically evaluate whether hyper-heuristics, more specifically genetic programming (GP), can be used to improve agents decentrally coordinated via CNET. We compare several GP settings and compare the resulting heuristic with existing centralized and decentralized algorithms on a dynamic PDP dataset with varying levels of dynamism, urgency, and scale. The results indicate that the evolved heuristic always outperforms the optimization algorithm in the decentralized MAS and often outperforms the centralized optimization algorithm. Our paper shows that des...