2013
DOI: 10.14569/ijacsa.2013.041003
|View full text |Cite
|
Sign up to set email alerts
|

Automated Edge Detection Using Convolutional Neural Network

Abstract: Abstract-The edge detection on the images is so important for image processing. It is used in a various fields of applications ranging from real-time video surveillance and traffic management to medical imaging applications. Currently, there is not a single edge detector that has both efficiency and reliability. Traditional differential filter-based algorithms have the advantage of theoretical strictness, but require excessive postprocessing. Proposed CNN technique is used to realize edge detection task it tak… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 16 publications
(5 citation statements)
references
References 13 publications
0
4
0
1
Order By: Relevance
“…Salah satu fitur yang dapat diekstrak adalah edge pada tangan. CNN memiliki tahapan convolution yang secara otomatis akan melakukan ekstraksi pada citra [6]. Sehingga CNN akan cocok digunakan untuk klasifikasi gesture tangan manusia untuk game rock, paper, dan scissors.…”
Section: Pendahuluanunclassified
“…Salah satu fitur yang dapat diekstrak adalah edge pada tangan. CNN memiliki tahapan convolution yang secara otomatis akan melakukan ekstraksi pada citra [6]. Sehingga CNN akan cocok digunakan untuk klasifikasi gesture tangan manusia untuk game rock, paper, dan scissors.…”
Section: Pendahuluanunclassified
“…Traditional fault diagnosis methods include time-domain analysis (Gangsar and Tiwari, 2014), frequency-domain analysis (Chen et al, 2022), and time–frequency domain analysis; features are extracted by analyzing information in time and frequency domains. In recent years, the application of neural network to fault diagnosis is popular, and the deep neural network (DNN) (Siniscalchi et al, 2013), convolutional neural network (CNN) (El-Sayed et al, 2013), deep belief network (DBN) (Tran et al, 2014), and other methods have been more mature. They use neural networks to extract features from signals or images, and the distance between source domain and target domain is shortened by domain adaptation layer, and the prediction result is obtained by fault classification.…”
Section: Introductionmentioning
confidence: 99%
“…Simultaneously, artificial intelligence methods, such as artificial neural networks (NNs), have frequently proven their merits in the context of edge detection, classification, and segmentation [12,[18][19][20]. Recently, research has focused on convolutional NNs that were also applied to field boundary detection [21][22][23][24].…”
Section: Introductionmentioning
confidence: 99%