The explicit polarization (X-Pol) method is a fragment-based quantum mechanical model, in which a macromolecular system in solution is partitioned into monomer fragments. The present study extends the original X-Pol method, where all fragments are treated using the same electronic structure theory, to a multilevel representations, called multilevel X-Pol, in which different electronic structure methods are used to describe different fragments. The multilevel X-Pol method has been implemented into Gaussian 09. A key ingredient that is used to couple interfragment electrostatic interactions at different levels of theory is the use of the response density for post-self-consistent-field energy (The response density is also called the generalized density). The method is useful for treating fragments in a small region of the system such as the solute molecules or the substrate and amino acids in the active site of an enzyme with a high-level theory, and the fragments in the rest of the system by a lower-level and computationally more efficient method. The method is illustrated here by applications to hydrogen bonding complexes in which one fragment is treated with the hybrid M06 density functional, Møller-Plesset perturbation theory, or coupled cluster theory, and the other fragments are treated by Hartree-Fock theory or the B3LYP or M06 hybrid density functionals.