2015
DOI: 10.1109/tits.2015.2399492
|View full text |Cite
|
Sign up to set email alerts
|

Automated Extraction of Urban Road Facilities Using Mobile Laser Scanning Data

Abstract: This paper proposes a novel, automated algorithm for rapidly extracting urban road facilities, including street light poles, traffic signposts, and bus stations, for transportation-related applications. A detailed description and implementation of the proposed algorithm is provided using mobile laser scanning data collected by a state-of-the-art RIEGL VMX-450 system. First, to reduce the quantity of data to be handled, a fast voxel-based upward growing method is developed to remove ground points. Then, off-gro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
50
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 85 publications
(53 citation statements)
references
References 44 publications
1
50
0
2
Order By: Relevance
“…Dans Yu et al (2015), une nouvelle méthode est proposée pour la reconnaissance de mobilier urbain (c-à-d., panneau de signalisation, lampadaire, arrêt de bus) dans des nuages de points acquis avec des STM. La démarche implique le descripteur FPFH ainsi qu'une fonction de coût d'appariement entre les segments de points extraits du nuage et des objets de référence.…”
Section: Performances Des Descripteurs 3d Appliqués Aux Données Issueunclassified
“…Dans Yu et al (2015), une nouvelle méthode est proposée pour la reconnaissance de mobilier urbain (c-à-d., panneau de signalisation, lampadaire, arrêt de bus) dans des nuages de points acquis avec des STM. La démarche implique le descripteur FPFH ainsi qu'une fonction de coût d'appariement entre les segments de points extraits du nuage et des objets de référence.…”
Section: Performances Des Descripteurs 3d Appliqués Aux Données Issueunclassified
“…Jochem et al [10] and Wu et al [11] extract buildings from LiDAR data of urban environments. Yu et al [12] identify road features from mobile terrestrial LiDAR datasets. Hullo et al [13] create as-built model of industrial sites from terrestrial LiDAR data.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The results are appealing for a wide range of applications such as facility mapping, environment assessment and road inventory. While digital imaging sensors are frequently adopted to characterize the urban landscape and land use types, mobile laser scanners (MLS) are increasingly used to directly acquire dense 3D geo-data about urban facility along the road corridor (Babahajiani et al, 2016;Yu et al, 2015). MLS is generally used for small-scale area applications, such as road inventory in individual sections, and provide accurate and dense 3D data of the object surfaces.…”
Section: Introductionmentioning
confidence: 99%
“…Former studies are frequently focused on individual object classes such as buildings, vegetation, or street lights/traffic signs (Steinsick et al, 2017;Yu et al, 2015). Weinmann et al (2015) used Conditional Random Fields (CRF) for point-by-point classification of several objects in urban ALS or MLS data.…”
Section: Introductionmentioning
confidence: 99%