Systematic literature reviews provide rigorous assessments of clinical, cost-effectiveness, and humanistic data. Accordingly, there is a growing trend worldwide among healthcare agencies and decision-makers to require them in order to make informed decisions. Because these reviews are labor-intensive and time consuming, we applied advanced analytic methods (AAM) to determine if machine learning methods could classify abstracts as well as humans. Literature searches were run for metastatic non-small cell lung cancer treatments (mNSCLC) and metastatic castration-resistant prostate cancer (mCRPC) . Records were reviewed by humans and two AAMs. AAM-1 involved a pre-trained data-mining model specialized in biomedical literature, and AAM-2 was based on support vector machine algorithms. The AAMs assigned an accept/reject status, with reasons for exclusion. Automatic results were compared to those of humans. For mNSCLC, 5820 records were processed by humans and 440 (8%) records were accepted and the remaining items rejected. AAM-1 correctly accepted 6% of records and correctly excluded 79%. AAM-2 correctly accepted 6% of records and correctly excluded 82%. The review was completed by AAM-1 or AAM-2 in 52 hours, compared to 196 hours for humans. Work saved was estimated to be 76% and 79% by AAM-1 and AAM-2, respectively. For mCRPC, 2434 records were processed by humans and 26% of these were accepted and 74% rejected. AAM-1 correctly accepted 23% of records and rejected 62%. AAM-2 correctly accepted 20% of records and rejected 66%. The review was completed by AAM-1, AAM-2, and humans in 25, 25 and 85 hours, respectively. Work saved was estimated to be 61% and 68% by AAM-1 and AAM-2, respectively. AAMs can markedly reduce the time required for searching and triaging records during a systematic review. Methods similar to AAMs should be assessed in future research for how consistent their performances are in SLRs of economic, epidemiological and humanistic evidence.