2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded 2019
DOI: 10.1109/cse/euc.2019.00010
|View full text |Cite
|
Sign up to set email alerts
|

Automatic Detection of Cervical Region from VIA and VILI Images using Machine Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2021
2021
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 9 publications
0
1
0
1
Order By: Relevance
“…The potential for automatic analysis of digital cervical images in revolutionizing screening for precancers has motivated the development of several automatic and semiautomatic image analysis algorithms. These include algorithms for anatomical landmark detection [9], cervix region detection [10], [11], cervix type detection [12], pre-cancerous lesion detection-segmentation [13]- [15] and disease diagnosis [16]- [18]. Since our main concern is detecting precancer (or worst disease condition) in cervical images, we restrict our literature review to the topically relevant algorithms.…”
Section: Related Literaturementioning
confidence: 99%
“…The potential for automatic analysis of digital cervical images in revolutionizing screening for precancers has motivated the development of several automatic and semiautomatic image analysis algorithms. These include algorithms for anatomical landmark detection [9], cervix region detection [10], [11], cervix type detection [12], pre-cancerous lesion detection-segmentation [13]- [15] and disease diagnosis [16]- [18]. Since our main concern is detecting precancer (or worst disease condition) in cervical images, we restrict our literature review to the topically relevant algorithms.…”
Section: Related Literaturementioning
confidence: 99%
“…Untuk mengatasi hal tersebut berbagai penelitian telah dilakukan seperti pada penelitian [7] dimana Acetowhite Epithelium Zone (AEZ) yang merupakan lesi IVA positif (lesi kanker) dapat dideteksi secara semi-otomatis dengan menggunakan metode registered ratio image. Beberapa penelitian deteksi kanker serviks dengan pengolahan citra digital dilakukan dengan artificial intelligence baik dengan platform machine learning [8]- [10] maupun dengan deep learning [11], [12]. Untuk meningkatkan performa system deteksi kanker serviks dengan pengolahan citra digital telah dilakukan dengan meningkatkan kualitas citra input [13] dan optimasi algoritma klasifikasi system [14], [15].…”
unclassified