The aim of this study was to develop an integrated system of non-contact sleep stage detection and sleep disorder treatment for health monitoring. Hence, a method of brain activity detection based on microwave scattering technology instead of scalp electroencephalogram was developed to evaluate the sleep stage. First, microwaves at a specific frequency were used to penetrate the functional sites of the brain in patients with sleep disorders to change the firing frequency of the activated areas of the brain and analyze and evaluate statistically the effects on sleep improvement. Then, a wavelet packet algorithm was used to decompose the microwave transmission signal, the refined composite multiscale sample entropy, the refined composite multiscale fluctuation-based dispersion entropy and multivariate multiscale weighted permutation entropy were obtained as features from the wavelet packet coefficient. Finally, the mutual information-principal component analysis feature selection method was used to optimize the feature set and random forest was used to classify and evaluate the sleep stage. The results show that after four times of microwave modulation treatment, sleep efficiency improved continuously, the overall maintenance was above 80%, and the insomnia rate was reduced gradually. The overall classification accuracy of the four sleep stages was 86.4%. The results indicate that the microwaves with a certain frequency can treat sleep disorders and detect abnormal brain activity. Therefore, the microwave scattering method is of great significance in the development of a new brain disease treatment, diagnosis and clinical application system.