In this paper, authors propose a method for determining the mechanical characteristics of traction electric motors and parameters of an electromechanical transmission of an industrial tractor. To ensure maximum machine performance, the developed transmission has two mechanical ranges: transport and technological. A feature of the presented scheme is the inclusion of a «ZK» type rotation mechanism (developed by the staff of Bauman MSTU G. Zaichik, M. Kreines and M. Kristi) in its composition. This mechanism is characterized by high traction in turning. The layout of industrial tractors involves placing the transmission in a cramped space inside the frame. In this regard, when developing the unit, it was required to implement its most compact design. This was achieved by using the same planetary gears to form the «ZK» rotation mechanism and for the reduced «technological» transmission range. As part of the study, traction capabilities of the tractor in each range were evaluated. In addition, an analysis was made of the influence of the design parameter of the planetary gears of the «ZK» mechanism on the operational characteristics of the machine. Depending on the design parameter, the required torques and rotational speeds of the traction electric motor rotors were obtained to ensure a given driving mode in a turn, and the time to complete a full rotation of the machine around the center of mass and the stopped side in the «transport» and «technological» transmission ranges was determined. In conclusion, an assessment was made of the influence of tractor transmission parameters on the maximum speed of maneuvers, which made it possible to determine the required power of electric machines taking into account the comfortable work of the driver-operator.