Abstract. Presented is a hybrid method to generate textual descriptions of video based on actions. The method includes an action classifier and a description generator. The aim for the action classifier is to detect and classify the actions in the video, such that they can be used as verbs for the description generator. The aim of the description generator is (1) to find the actors (objects or persons) in the video and connect these correctly to the verbs, such that these represent the subject, and direct and indirect objects, and (2) to generate a sentence based on the verb, subject, and direct and indirect objects. The novelty of our method is that we exploit the discriminative power of a bag-of-features action detector with the generative power of a rule-based action descriptor. Shown is that this approach outperforms a homogeneous setup with the rulebased action detector and action descriptor.