Worldwide, lung cancer is the leading cause of mortality and rapidly spreads. Lung tissue that is benign does not grow significantly, but lung tissue that is malignant grows rapidly and attacks the body, posing a grave threat to one's health. This paper provides a literature review of computer-aided detection (CAD) systems for lung cancer diagnosis. Preprocessing, segmentation, detection, and classification are the stages of the CAD system. This review divides the preprocessing into three stages: image smoothing, edge sharpening, and noise removal. Additionally, lung segmentation is divided into three stages: histogram-based thresholding, linked component analysis, and lung extraction. The detecting phase aids in decreasing the workload. Several techniques are briefly described, including random forest, support vector machine (SVM), naive bayes, K-nearest neighbor (KNN), and convolutional neural network (CNN). Classification is the final stage; the image is then identified as containing or not possessing nodules. The prospect of incorporating CNN-based deep learning techniques into the CAD system is discussed. This paper is superior to other review studies on this topic due to its comprehensive examination of pertinent literature and structured presentation. We anticipate that our study may aid professional researchers and radiologists in developing more effective CAD systems for detecting lung cancer.