The object of research is the process of automatic control of the redundant structure of the vessel's executive devices for extreme rotation in the yaw channel. Traditionally, redundant structures have been used to improve the reliability of automated control systems and the maneuverability of vessels. At the same time, control redundancy can also be used to optimize control processes, thereby reducing fuel consumption, increasing control forces and moments, and reducing the time required to perform operations. This allows gaining advantages in movement over vessels not equipped with optimization modules. The paper considers the optimal management of the redundant structure of an offshore vessel, which ensures the rotational movement of the vessel around the center of rotation with the maximum angular velocity. As well as simultaneous maintenance of a given position or movement in the longitudinal and lateral channel, taking into account control restrictions. This problem is reduced to a nonlinear optimization problem with nonlinear and linear control constraints. The method, algorithmic and software of the module of extreme rotation of the vessel with a redundant structure of executive devices have been developed. The workability and efficiency of the developed method, algorithmic and software are verified by mathematical modeling in the closed circuit «Control Object – Control System». The results of the conducted experiment showed that the use of optimal control allows, in comparison with traditional methods of splitting controls, to increase the control moment and angular speed of rotation by 1.5–2 times. The obtained opportunities are explained by the use of a mathematical model of the redundant control structure and the optimization procedure for calculating optimal controls in the on-board computer of the automated system. The developed method can be used on vessels, provided it is integrated into the existing automated system of the on-board computer with an open architecture, to increase the capabilities of automatic traffic control.