2012 International Conference on Computer and Communication Engineering (ICCCE) 2012
DOI: 10.1109/iccce.2012.6271249
|View full text |Cite
|
Sign up to set email alerts
|

Automatic person identification system using handwritten signatures

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
9
0
1

Year Published

2013
2013
2023
2023

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(10 citation statements)
references
References 16 publications
0
9
0
1
Order By: Relevance
“…Penelitian pengenalan tulisan tangan telah dilakukan dengan berbabagi teknik.Mohammed dan Shamsuddin menggunakan invariant discretization untuk mengenali pola tulisan tangan pada pasangan kembar.Penelitian tersebut menujukkan bahwa pasangan kembar memiliki pola tulisan tangan yang berbeda (Mohammed dan Shamsuddin, 2012).Discrete Wavelet Transform juga terlah berhasil digunakan untuk mengektraksi fitur pergerakan pena dan pergerakan sudut untuk mengenali pola tulisan tangan (Fahmy, 2010). Bertolini et almenggunakan local binary patterns dan local phase quantization untuk mengekstraski ciri tektur pada tulisan tangan (Bertolini et al, 2013).Pengenalan tulisan tangan yang dilakukan oleh Abushariah et al menggunakan global fitur dan Neural Network menghasilkan akurasi 53% -79%.Pernelitian tersebut juga menghasilkan akurasi 81% dengan menggunakan algoritma KNN (Abushariah et al, 2012). Beberapa penelitian telah dilakukan untuk mengdentifikasi penulis melalui pola tulisan tangan.…”
Section: Studi Literaturunclassified
“…Penelitian pengenalan tulisan tangan telah dilakukan dengan berbabagi teknik.Mohammed dan Shamsuddin menggunakan invariant discretization untuk mengenali pola tulisan tangan pada pasangan kembar.Penelitian tersebut menujukkan bahwa pasangan kembar memiliki pola tulisan tangan yang berbeda (Mohammed dan Shamsuddin, 2012).Discrete Wavelet Transform juga terlah berhasil digunakan untuk mengektraksi fitur pergerakan pena dan pergerakan sudut untuk mengenali pola tulisan tangan (Fahmy, 2010). Bertolini et almenggunakan local binary patterns dan local phase quantization untuk mengekstraski ciri tektur pada tulisan tangan (Bertolini et al, 2013).Pengenalan tulisan tangan yang dilakukan oleh Abushariah et al menggunakan global fitur dan Neural Network menghasilkan akurasi 53% -79%.Pernelitian tersebut juga menghasilkan akurasi 81% dengan menggunakan algoritma KNN (Abushariah et al, 2012). Beberapa penelitian telah dilakukan untuk mengdentifikasi penulis melalui pola tulisan tangan.…”
Section: Studi Literaturunclassified
“…The database consists of 663 Arabic words and in a total of 367 sentences where each sentence is made up of 2 up to 9 words [6]. Another data corpus that has been developed by Abushariah et al [4] consists of 415 Arabic statements. The majority of the statements were recorded by Alghamdi et al [6] and another 48 sentences were added based on 51 Arabic mother tongue individuals that comprised of 23 males and 28 females.…”
Section: IImentioning
confidence: 99%
“…But this area of research is still lack of contributed corpuses and that leads to lack of data to train Arabic ASR. As reported by Abushariah et al [4], written corpuses are much more than spoken corpuses which mean that the spoken training data needs more contributions which can assist researchers to explore unrevealed Arabic Speech Recognition (ASR) area especially for Muslims who are Non-native Arabic speakers.…”
Section: Introductionmentioning
confidence: 96%
“…The result of classification depends on the result given during feature extraction process. The ultimate goal in this classification process is eventually able to divide data by the corresponding class [17]. Classification is the last step required to perform signature recognition [18].…”
Section: Classification Of Signaturementioning
confidence: 99%
“…Neural Network has many layers are that are confined to reduce the time to solve the existing problems [17]. Multilayer Perceptron is an example of Artificial Neural Network (ANN) that is typically used to provide solutions to different problems, for example for pattern recognition and interpolation [19].…”
Section: A Multi Layer Perceptron (Mlp)mentioning
confidence: 99%