Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007
DOI: 10.1007/978-3-540-75757-3_72
|View full text |Cite
|
Sign up to set email alerts
|

Automatic Segmentation of Blood Vessels from Dynamic MRI Datasets

Abstract: Abstract. In this paper we present an approach for blood vessel segmentation from dynamic contrast-enhanced MRI datasets of the hand joints acquired from patients with active rheumatoid arthritis. Exclusion of the blood vessels is needed for accurate visualisation of the activation events and objective evaluation of the degree of inflammation. The segmentation technique is based on statistical modelling motivated by the physiological properties of the individual tissues, such as speed of uptake and concentrati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
2
0
1

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 18 publications
1
2
0
1
Order By: Relevance
“…A statistically significant difference between morphometric parameters, such as arterial distensibility has been shown between Sprague-Dawley control SDC and CH (SDH) lungs [7]. Similar morphological changes are illustrated by the differences seen between a SDC and SDH rat analyzed with the AVDMA protocol as shown in Figures 14E and 14F.…”
Section: Validationsupporting
confidence: 59%
“…A statistically significant difference between morphometric parameters, such as arterial distensibility has been shown between Sprague-Dawley control SDC and CH (SDH) lungs [7]. Similar morphological changes are illustrated by the differences seen between a SDC and SDH rat analyzed with the AVDMA protocol as shown in Figures 14E and 14F.…”
Section: Validationsupporting
confidence: 59%
“…The use of volumetric principal component maps, volumetric template matching, volume and volumetric eccentricity criteria reduce false-positive detection rates arising from artefacts caused by enhancing blood vessels, nipples and normal parenchyma. Principal component analysis has found several application areas in DCE-MRI such as visualization of suspiciously enhancing regions (Twellmann et al 2004), assessment of breast density Leach 2009b, Khazen and, registration of dynamic images to correct patient motion (Melbourne et al 2007) and segmentation of blood vessels (Kubassova 2007). Any of these methods can be easily embedded into the system introduced in this study enabling multiple diagnostic assessments for improved evaluations.…”
Section: Discussionmentioning
confidence: 99%
“…8г). Дальнейшая разработка этих методик позволит в 3D-режиме изображать артериальную и венозную систему в разном цвете и даже визулизировать внутрипросветные структуры, такие как венозные клапаны или атеросклеротические бляшки [84][85][86][87][88]. Не вдаваясь в подробности, можно заключить, что в основе всех этих методов визуализации сосудистой системы лежит создание нового программного обеспечения считывания MRI-сиг на лов, их постобработки и построения на этой основе качественно нового и даже цветовго 3D-изображения.…”
Section: заключениеunclassified