Abstract. This paper presents a comparison of two clustering based algorithms and one region based algorithm for segmenting fatty and dense tissue in mammographic images. This is a crucial step in order to obtain a quantitative measure of the density of the breast. The first algorithm is a multiple thresholding algorithm based on the excess entropy, the second one is based on the Fuzzy C-Means clustering algorithm, and the third one is based on a statistical analysis of the breast. The performance of the algorithms is exhaustively evaluated using a database of full-field digital mammograms containing 150 CC and 150 MLO images and ROC analysis (ground-truth provided by an expert). Results demonstrate that the use of region information is useful to obtain homogeneous region segmentation, although clustering algorithms obtained better sensitivity.