We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.
Multimodal visualization aims at fusing different data sets so that the resulting combination provides more information and understanding to the user. To achieve this aim, we propose a new information-theoretic approach that automatically selects the most informative voxels from two volume data sets. Our fusion criteria are based on the information channel created between the two input data sets that permit us to quantify the information associated with each intensity value. This specific information is obtained from three different ways of decomposing the mutual information of the channel. In addition, an assessment criterion based on the information content of the fused data set can be used to analyze and modify the initial selection of the voxels by weighting the contribution of each data set to the final result. The proposed approach has been integrated in a general framework that allows for the exploration of volumetric data models and the interactive change of some parameters of the fused data set. The proposed approach has been evaluated on different medical data sets with very promising results.
Fig. 1. Volume renderings of the tooth data set using transfer functions obtained with different target distributions. From left to right, the target distributions used are occurrence weighted by intensity, occurrence weighted by importance (1 for enamel and 0.5 for the rest), occurrence weighted by gradient, and occurrence weighted by importance using a mask of the nerve.Abstract-In this paper we present a framework to define transfer functions from a target distribution provided by the user. A target distribution can reflect the data importance, or highly relevant data value interval, or spatial segmentation. Our approach is based on a communication channel between a set of viewpoints and a set of bins of a volume data set, and it supports 1D as well as 2D transfer functions including the gradient information. The transfer functions are obtained by minimizing the informational divergence or Kullback-Leibler distance between the visibility distribution captured by the viewpoints and a target distribution selected by the user. The use of the derivative of the informational divergence allows for a fast optimization process. Different target distributions for 1D and 2D transfer functions are analyzed together with importance-driven and view-based techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.