Bonferroni mean (BM) operators have been established as a powerful tool for handling the interrelationship between the input arguments under various decision-making information. However, the existing BM operators do not take into account the overall interaction among decision makers or criteria. To overcome this limitation, this study considers the Shapley fuzzy measure (SFM) with the normalized weighted BM (NWBM) operator under a neutrosophic environment. In addition, the current research ignores the bipolarity and hesitancy during decision elicitations, resulting in the imprecise decision results. In this paper, the hesitant bipolar-valued neutrosophic set (HBNS) which is the extension of hesitant fuzzy set and bipolar neutrosophic set is employed. The main focus of this paper is in the development of an aggregation operator for HBNS. Based on the literature review, we would like to fill in the gaps by developing a hesitant bipolar-valued neutrosophic Shapley NWBM (HBN-SNWBM) operator where the overall interaction among decision makers can be considered. Besides that, a three-phase decision making framework is also proposed to show the applicability of the proposed aggregation operator to the real-world decision problems. The HBN-SNWBM operator and the decision making framework are applied to two examples of investment selection where evaluations are implemented using the proposed aggregations that based upon hesitant bipolar-valued neutrosophic sets. In the first example, it is found that a weapon company is the best alternative for investment followed by a food company. Sensitivity of parameters of the aggregation operator is also analysed and it is found that the ranking results are consistent despite of different parameter values used. This verifies the insensitivity of
p,q
parameters in the developed aggregation operator. The proposed decision making framework and hesitant bipolar-valued neutrosophic sets would be a great significance for the practical implementation of the aggregation operators.