The Speaker identification process is not a new trend; however, for the Arabic Holy Quran recitation, there are still quite improvements that can make this process more accurate and reliable. This paper collected the input data from 14 native Arabic reciters, consisting of âSurah Al-Kawtharâ speech signals from the Holy Quran. Moreover, this paper discusses the accuracy rates for 8 and 16 features. Indeed, a modified Vector Quantization (VQ) technique will be presented, in addition to realistically matching the centroids of the various codebooks and measuring systemsâ effectiveness. Note that the VQ technique will be utilized to generate the codebooks by clustering these features into a finite number of centroids. The proposed systemâs software was built and executed using MATLABÂŽ. The proposed systemâs total accuracy rate was 97.92% and 98.51% for 8 and 16 centroids codebooks, respectively. However, this study discussed two validation tactics to ensure that the outcomes are reliable and can be reproduced. Hence, the K-mean clustering algorithm has been used to validate the obtained results and discuss the outcomes of this study. Finally, it has been found that the improved VQ method gives a better result than the K-means method.