Education is a fundamental right that enriches everyone's life. However, physically challenged people often debar from the general and advanced education system. Audio-Visual Automatic Speech Recognition (AV-ASR) based system is useful to improve the education of physically challenged people by providing hands-free computing. They can communicate to the learning system through AV-ASR. However, it is challenging to trace the lip correctly for visual modality. Thus, this paper addresses the appearance-based visual feature along with the co-occurrence statistical measure for visual speech recognition. Local Binary Pattern-Three Orthogonal Planes (LBP-TOP) and Grey-Level Co-occurrence Matrix (GLCM) is proposed for visual speech information. The experimental results show that the proposed system achieves 76.60 % accuracy for visual speech and 96.00 % accuracy for audio speech recognition.
This paper presents an overview of text dependent speaker verification system (SVS). There are several methods of text dependent speaker verification. Here we give brief introduction on text dependent speaker verification and then discuss the structure of several previous works. Available variation of different phases and efficiency of system proposed previously will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.