2014
DOI: 10.5815/ijigsp.2014.12.04
|View full text |Cite
|
Sign up to set email alerts
|

Automatically Gradient Threshold Estimation of Anisotropic Diffusion for Meyer’s Watershed Algorithm Based Optimal Segmentation

Abstract: Medical image segmentation is a fundamental task in the medical imaging field. Optimal segmentation is required for the accurate judgment or appropriate clinical diagnosis. In this paper, we proposed automatically gradient threshold estimator of anisotropic diffusion for Meyer's Watershed algorithm based optimal segmentation. The Meyer's Watershed algorithm is the most significant for a large number of regions separations but the over segmentation is the major drawback of the Meyer's Watershed algorithm. We ar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2017
2017
2021
2021

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 35 publications
0
4
0
1
Order By: Relevance
“…Figure 2 illustrated options with the following criteria: if the center of a pixel inside FE it included in integration (orange squares) otherwise not (blue squares). The problem of the meshing area goes beyond the paper, but nowadays there are some methods to create mesh on CT data [30][31][32]. In the assumptions stress results in node are invalid.…”
Section: Methodsmentioning
confidence: 99%
“…Figure 2 illustrated options with the following criteria: if the center of a pixel inside FE it included in integration (orange squares) otherwise not (blue squares). The problem of the meshing area goes beyond the paper, but nowadays there are some methods to create mesh on CT data [30][31][32]. In the assumptions stress results in node are invalid.…”
Section: Methodsmentioning
confidence: 99%
“…где V -объем конечного элемента в пространстве сплошного материала Ω; V' -объем в дискретном пространстве компьютерной томографии Ω'. Для сегментации исследуемого объекта на изображении использовались методы, основанные на оптической плотности [30,31] с модификациями, описанными в [32,33]. Для автоматизации построения расчетной сетки использовался подход фильтрации сетки, описанный в [34].…”
Section: материалы и методыunclassified
“…We used a specific algorithm to analyze the CT data. Generally, the algorithm of the analysis can be described as [25,29,31,32]: 1) calculating the binarization threshold; 2) meshing the sample;…”
Section: mentioning
confidence: 99%
“…The actual task in these problems is the automation of such a calculation. The obtained data can be useful in various biomechanical calculations, such as determination of bone defects before [22][23][24][25] and after [26][27][28] surgery.…”
Section: Introductionmentioning
confidence: 99%