Medical image segmentation is a fundamental task in the medical imaging field. Optimal segmentation is required for the accurate judgment or appropriate clinical diagnosis. In this paper, we proposed automatically gradient threshold estimator of anisotropic diffusion for Meyer's Watershed algorithm based optimal segmentation. The Meyer's Watershed algorithm is the most significant for a large number of regions separations but the over segmentation is the major drawback of the Meyer's Watershed algorithm. We are able to remove over segmentation after using anisotropic diffusion as a preprocessing step of segmentation in the Meyer's Watershed algorithm. We used a fixed window size for dynamically gradient threshold estimation. The gradient threshold is the most important parameter of the anisotropic diffusion for image smoothing. The proposed method is able to segment medical image accurately because of obtaining the enhancement image. The introducing method demonstrates better performance without loss of any clinical information while preserving edges. Our investigated method is more efficient and effective in order to segment the region of interests in the medical images indeed.
Computed tomography angiography (CTA) is a stabilized tool for vessel imaging in the medical image processing field. High-intense structures in the contrast image can seriously hamper luminal visualization. Metal artifacts are an extensive problem in computed tomography (CT) images. We proposed directional restoration filtering process with Fuzzy logic in order to reduce metal artifact from CT images. We create two sets by iteration process and these sets will be sorted in ascending order. After sorting we take two elements from two data sets and the tracking both elements will be selected from the second position of those sorting arrays. Intersection Fuzzy logic will be executed between two selected elements and Gaussian convolution operation will be performed in the entire images because of enhancement the artifact affected CT images. In this paper, we investigated a fully automated intensity-based filter and it depends on the gray level variation rating. This results in a better visualization of the vessel lumen, also of the smaller vessels, allowing a faster and more accurate inspection of the whole vascular structures.
The calcification plaque is a one kind of artifacts or noises, which is occurred in the Computed Tomography (CT) images as a very high attenuation coefficient. Computed Tomography (CT) images are more helpful than other modalities (e.g. Ultrasonic Imaging, Magnetic Resonance Imaging (MRI) etc.) for disease diagnosis but unfortunately, CT image is an affected sometime by calcification plaque. Medical image segmentation cannot be optimum because of having calcification in the CT images, which is absolutely unexpected. The calcification plaque is the major problem for optimal organ segmentation and detection. This proposed task is a subjective as well as an effective for calcification alleviation from CT images. In this paper, Firstly, we applied the Fisher's Discriminant Analysis (FDA) for optimal threshold value estimation. Secondly, the proposed optimal threshold value is used for the optimal threshold image extraction. After this, the morphological operation is used for heavy calcification erosion and the XOR operation is used for adjusting the optimal threshold image with the input image. Finally, we implemented the Extra-Energy Reduction (EER) Function to smooth the desired image. Therefore, our investigated method is the most significant and articulate in order to attenuate calcification plaque from CT images.
The calcification plaque is a one kind of artifacts or noises, which is occurred in the Computed Tomography (CT) images as a very high attenuation coefficient. Computed Tomography (CT) images are more helpful than other modalities (e.g. Ultrasonic Imaging, Magnetic Resonance Imaging (MRI) etc.) for disease diagnosis but unfortunately, CT image is an affected sometime by calcification plaque. Medical image segmentation cannot be optimum because of having calcification in the CT images, which is absolutely unexpected. The calcification plaque is the major problem for optimal organ segmentation and detection. This proposed task is a subjective as well as an effective for calcification alleviation from CT images. In this paper, Firstly, we applied the Fisher's Discriminant Analysis (FDA) for optimal threshold value estimation. Secondly, the proposed optimal threshold value is used for the optimal threshold image extraction. After this, the morphological operation is used for heavy calcification erosion and the XOR operation is used for adjusting the optimal threshold image with the input image. Finally, we implemented the Extra-Energy Reduction (EER) Function to smooth the desired image. Therefore, our investigated method is the most significant and articulate in order to attenuate calcification plaque from CT images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.