The Johns Hopkins Clinical Compound Library ( JHCCL), a collection of Food and Drug Administration (FDA)-approved small molecules (1400), was screened in silico for identification of novel b 2 AR blockers and tested for hematopoietic stem cell (HSC) expansion and radioprotection in zebrafish embryos. Docking studies, followed by the capacity to hasten erythropoiesis, identified todralazine (Binding energy, -8.4 kcal/mol) as a potential HSC-modulating agent. Todralazine (5 lM) significantly increased erythropoiesis in caudal hematopoietic tissue (CHT) in wild-type and anemic zebrafish embryos (2.33-and 1.44-folds, respectively) when compared with untreated and anemic control groups. Todralazine (5 lM) treatment also led to an increased number of erythroid progenitors, as revealed from the increased expression of erythroid progenitor-specific genes in the CHT region. Consistent with these effects, zebrafish embryos, Tg(cmyb:gfp), treated with 5 lM todralazine from 24 to 36 hours post fertilization (hpf) showed increased (approximately two-folds) number of HSCs at the aorta-gonad-mesonephros region (AGM). Similarly, expression of HSC marker genes, runx1 (3.3-folds), and cMyb (1.41-folds) also increased in case of todralazine-treated embryos, further supporting its HSC expansion potential. Metoprolol, a known beta blocker, also induced HSC expansion (1.36-and 1.48-fold increase in runx1 and cMyb, respectively). Todralazine (5 lM) when added 30 min before 20 Gy gamma radiation, protected zebrafish from radiation-induced organ toxicity, apoptosis, and improved survival (80% survival advantage over 6 days). The 2-deoxyribose degradation test further suggested hydroxyl (OH) radical scavenging potential of todralazine, and the same is recapitulated in vivo. These results suggest that todralazine is a potential HSC expanding agent, which might be acting along with important functions, such as antioxidant and free radical scavenging, in manifesting radioprotection.